

INTEGRABILITY STRUCTURES IN THE RELATIVISTIC TWO- BODY PROBLEM

Vojtěch Witzany

vojtech.witzany@matfyz.cuni.cz, Charles University, Prague, Czech Republic

27. 11. 2025, AI&GW@CZ Workshop, Prague

CONTENTS

Hamiltonian integrable dynamics

Integrability of conservative
approximations to the two-body
problem

HAMILTONIAN INTEGRABLE DYNAMICS

PROMISE OF INTEGRABILITY

- A smooth, analytically understandable structure
- Multi-timescale expansions
- Separability of equations of motion
- Closed-form solutions of evolution
- No deterministic chaos – errors grow only polynomially in time

An autonomous Hamiltonian system of N degrees of freedom Liouville integrable if N functionally independent constants of motion in involution F_1, F_2, \dots, F_N . Then:

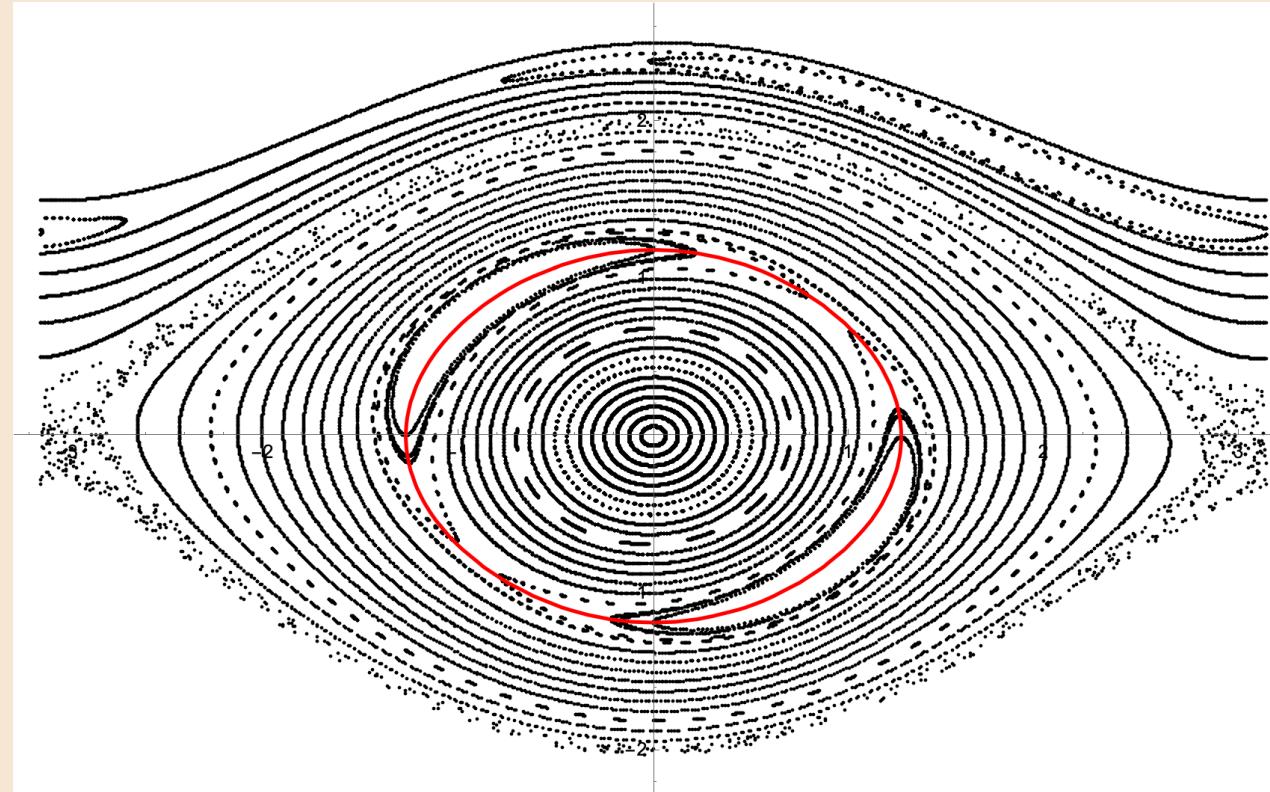
- Evolution can be solved for by *quadratures*.
- \exists pairs of canonical coordinates J_i, ψ^i such that J_i constants of motion, the Hamiltonian becomes $H(J_i)$, and

$$\dot{\psi}^i = \frac{\partial H}{\partial J_i} \equiv \Omega^i(J_j) = \text{const.}$$

These are known as *Action-Angle coordinates*.

KOLMOGOROV-ARNOLD-MOSER THEOREM

- Given an integrable Hamiltonian $H_0(J_i)$, how crazy can the dynamics generated by a close perturbed Hamiltonian $H = H_0(J_i) + \epsilon H_1(J_i, \psi^j)$ get?
- If the frequencies are non-degenerate (non-constant and functionally independent on J_i), then most of the invariant tori survive and smoothly deformed.
- However, an $O(\sqrt{\epsilon})$ volume of tori where the frequencies are commensurate (resonant) $k_i \Omega^i = 0$ is replaced by *qualitatively different* structures
- Pragmatically:
 - Width of resonance scales with k_i -harmonic of perturbing Hamiltonian as $\sqrt{\epsilon H_{1k}}$.
 - For smooth functions harmonics go as $e^{-C|k|}$ for large k_i .
 - For finite ϵ , we can set a $\propto \epsilon^2$ cut-off of the size of resonances to worry about – only finitely many



CONSERVATIVE APPROXIMATIONS TO THE TWO-BODY PROBLEM



INTEGRALS FROM POINCARÉ SYMMETRIES

- The Hamiltonian of a closed relativistic system must commute with generators of Poincaré group, this implies constants of motion
 - Spatial translations – total momentum \vec{P}
 - Time translations – total energy E (coordinate-time Hamiltonian)
 - Boosts – center of mass motion \vec{K} (allows to decouple total momentum from relative momentum)
 - Rotations – total angular momentum \vec{J}
- Not all 10 commute, but we get 6 commuting integrals
 - Energy E ,
 - Total momentum \vec{P} ,
 - Magnitude and one component of angular momentum in COM frame \vec{j}_{COM} (Pauli-Lubanski vector)

2 point particles

=

6 degrees of freedom

=

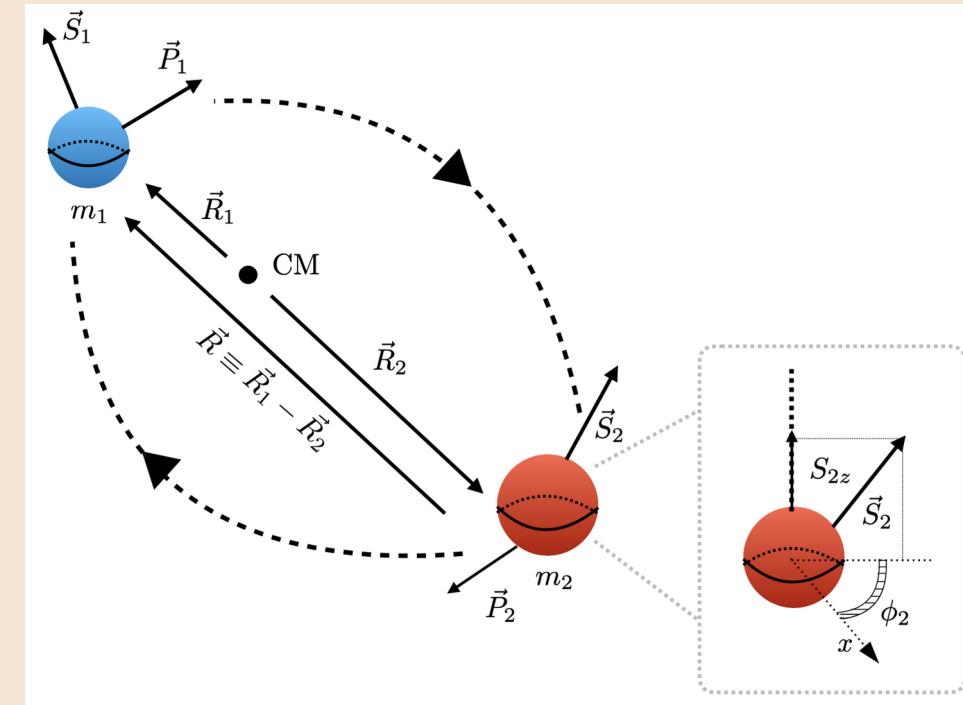
Automatically integrable

Any more degrees of freedom "activate"?

- Integrability is not guaranteed

SPIN HAS ENTERED THE CHAT

- Spin-orbital coupling kicks in at 1.5PN or for rapidly spinning compact objects
- The system contains at least one more degree of freedom per particle – *orientation of the spin vector with respect to other characteristic vectors of the system*
- This picture applies to both PN and large-mass ratio limits
- *Will the system stay integrable? No fundamental symmetries guarantee it*



From Tanay+ (2012.06586)

KNOWN INTEGRABILITY RESULTS

Approximation	References
1.5PN comparable mass	Damour (gr-qc/0103018)
2PN comparable mass, BH induced quadrupole	Tanay+ (2012.06586)
One spin off, or both on, but to linear order, all PN orders	Wu & Xian (1004.4549)
Kerr geodesics (primary spin)	Carter (1968)
Spinning test particle in Kerr	Rüdiger (1981,1983), VW (1903.03651), Skoupy & VW (2411.16855)
Spinning “test black hole” in Kerr to quadrupole	Compère+ (2302.14549), Ramond (2402.02670)

*Takeaway: Non-integrability may appear through $>2PN$, $\sim vS_1S_2$ terms for BH binaries!
(earlier for NSs)*

NEAT USE CASE: ACTIONS AS ROSETTA STONES FOR COMPACT BINARIES ACROSS THE PARAMETER SPACE

From VW, Skoupý, Stein, Tanay,
2411.09742

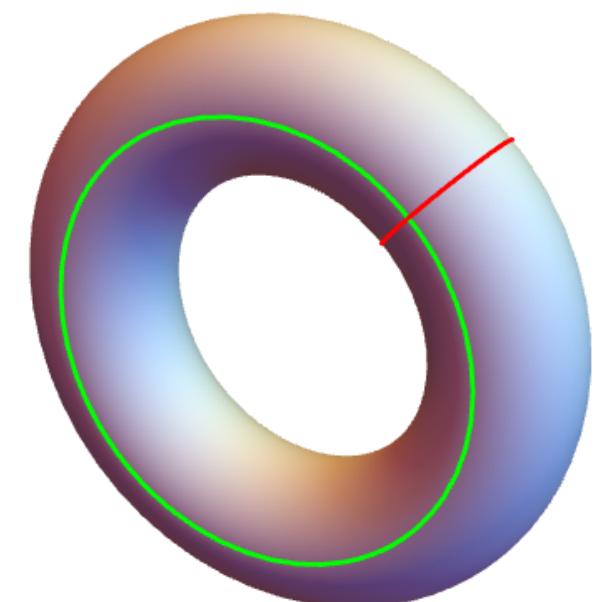
ACTIONS FOR SPINNING TEST PARTICLES

Take characteristic function fulfilling Hamilton-Jacobi equation from VW ([1903.03651](#))

$$W = -E_{\text{so}}(t - t_0) + L_{\text{so}}(\phi - \phi_0) + (s_{\parallel} - s)(\psi - \psi_0) \\ + \sum_{y=r,z} \int \pm \left(\sqrt{w_y'^2 + e_{0y} e_C^\kappa e_{D\kappa} \tilde{s}^{CD}} - \frac{1}{2} e_A^\kappa_{;\mu} e_{B\kappa} \tilde{s}^{AB} \right) dy$$

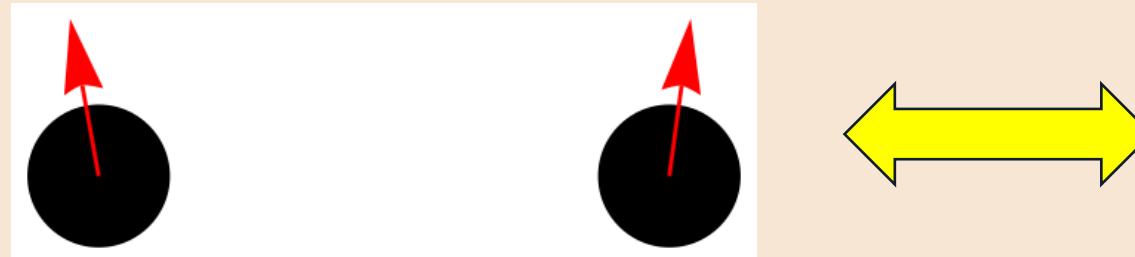
Compute actions over loops in phase space $J_\gamma = \frac{1}{2\pi} \oint_\gamma \sum_q \pi_q dq$

- Expand in spin, cure singularities
- Results in Legendre form in VW+ 2411.09742
- Also fundamental frequencies in closed form

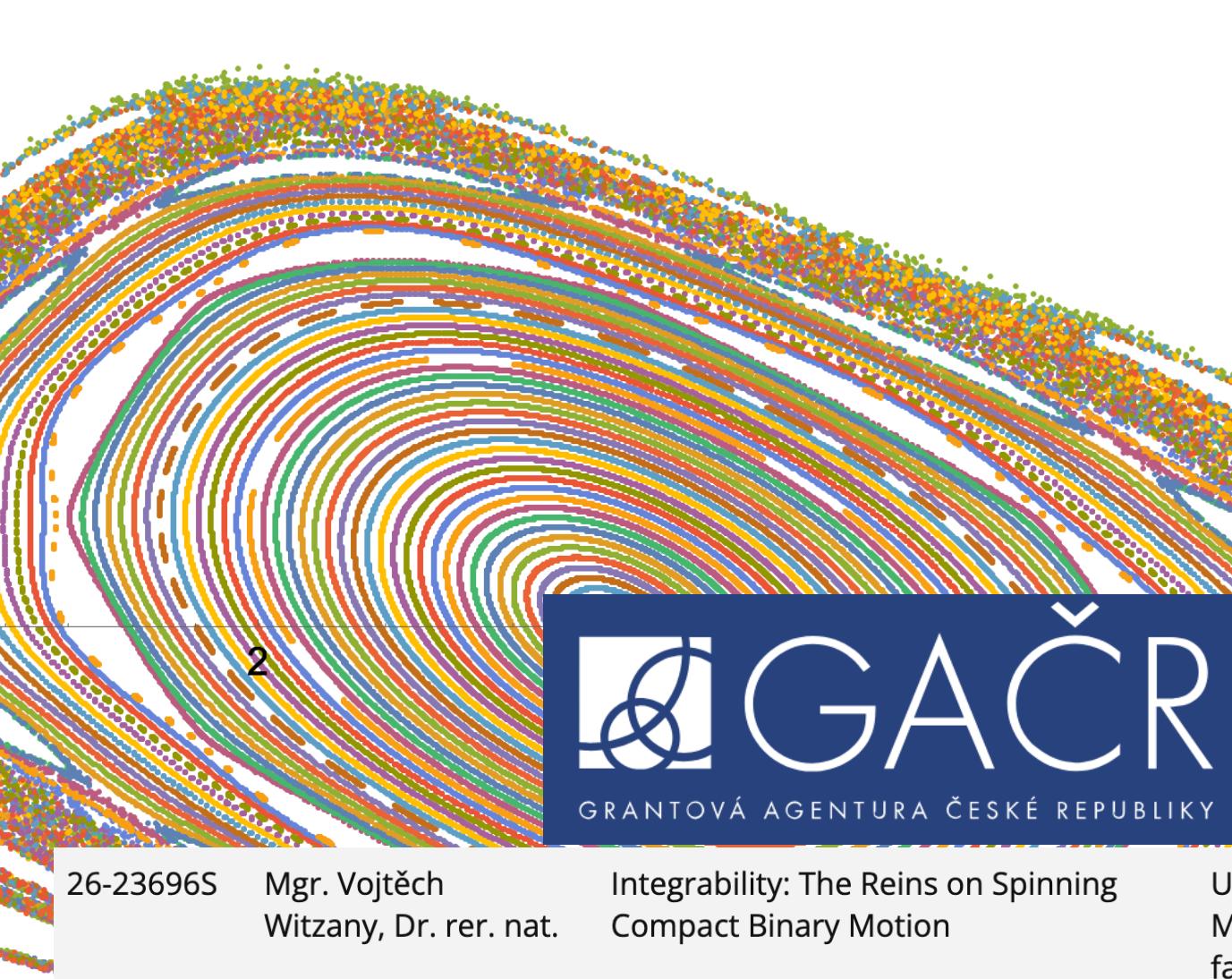


MATCHING FROM PN TO TEST PARTICLE

- Actions are coordinate-independent, only depend on homotopy class of loops
- Known in 1.5 PN limit from Tanay+ ([2012.06586](#), [2110.15351](#))
- Subject only to $SL(\mathbb{Z}, n)$ discrete lattice transforms
- The PN and test particle *continuous limits of the same system* (Used in the original EOB model by Buonanno & Damour, [gr-qc/9811091](#))
- *Actions match in overlap up to $SL(\mathbb{Z}, n)$, correspondence should hold everywhere*



$$I_r = J_r ,$$
$$I_L = J_z + |J_\phi| - (J_\psi + s) ,$$
$$I_{\Delta J} = J_\phi ,$$
$$I_5 = J_\psi + s .$$



26-23696S Mgr. Vojtěch
Witzany, Dr. rer. nat.

Integrability: The Reins on Spinning
Compact Binary Motion

Univerzita Karlova,
Matematicko-fyzikální
fakulta

3

OK2 – vědy o neživé
přírodě

SUMMARY

Integrability is practical and useful in more than one way

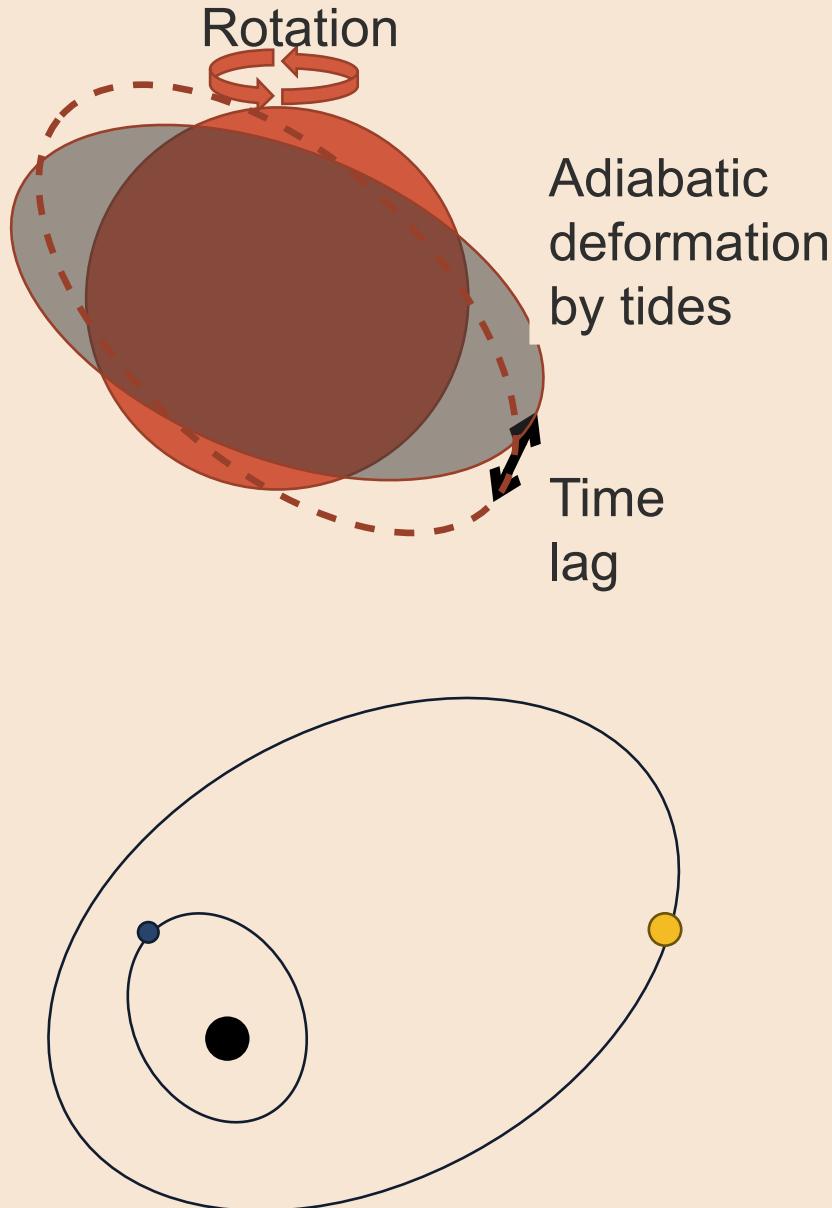
Integrability of spinning compact binaries to surprisingly high order, not guaranteed by symmetry!

inherent to environmental, tidal, non-GR effects

BACKUP SLIDES

CONSERVATIVE???

- Approximations where only finite number of degrees of freedom are needed to describe system and system is closed/autonomous
- Post-Newtonian dynamics to 2PN order on the level of equations of motion
- Higher orders with “standing-wave” boundary conditions up to 5PN (symmetric Green’s function)
- Standing-wave conditions also admissible for first order self-force
- Useful for two-timescale analysis



OTHER INTEGRABILITY BREAKING?

- Neutron stars, white dwarves have infinite internal degrees of freedom
- Once some internal degrees couple (*f*-modes etc.), this will break integrability at some point (e.g. Steinhoff+, 1608.01907)
- High order both in mass ratio and PN
- Other degrees of freedom are "more stuff" in the system, such as a third body (Bonga+, 1905.00030)
- *Non-integrability is generic, integrability is special, any modification of gravity or environment will generically break it!*