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Star clusters (SCs) are considered the building blocks of galaxies.

groups & associations
10 to 100 stars (M <100 M)
variable age

open clusters
~10%stars (M~ 103 M,)
~100 Myr

\ nuclear cluster :
10° to 108 stars (M 2 10® M)
~1Gyr .

3

globular clusters young massive clusters
2 10° stars (M~ 10* to 10° M,)) (e.g. inside LMC & SMCQ)
z 10 Gyr : 2 10* stars (M2 10* M,)

: <100 Myr 2




Focus of this lecture

Globular clusters are thought of as
« spherically symmetric
« dynamically relaxed

- containing (almost) no gas

Global dynamical evolution of SCs takes Myr to Gyr,
i.e. our observations are only snapshots in a random instant.
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Theoretical minimum

Concept of “two-body relaxation”
i.e. we can determine some evolutionary properties of
SCs from multiple two-body encounters

(e.g. Spitzer 1987; Binney & Tremaine 2008) m

- dynamical friction (from the decrease of v/)) *

+ mass segregation (dyn. friction depends on mass) " Y|

« crossing time (from avg. velocity and SC radius) K
measures the short-term evolution inside SCs m

- relaxation time (from the change of v ) *
measures the long-term evolution of SCs
"stars should forget their initial conditions after t,;," Zﬁ(
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Theoretical minimum

Radial density profile (plots from Cohn 1980; Pavlik & Subr 2018)
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Example of SCs and Al

Searching SCs in spiral galaxy Messier 83 (Bialopetravicius & Narbutis 2020)

- data from the Hubble Space Telescope and machine learning
- identification and localisation of SCs, revealing evolutionary and structural
parameters

1 kpe

1 arcmin
F 1
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Connecting the SC's structure, age, stellar populations, ...

Classic theories (e.g. Binney & Tremaine 2008) give good estimates, but sometimes do
not correspond to more realistic cases:

- some dynamical processes in young SCs (e.g. stellar mass distribution) are less
rapid than predicted (Pavlik et al. 2019a,b; Pavlik 2020a,b)

+ the global SC evolution (e.g. structural changes, mass loss, binary stars formation
and destruction) also depends on the internal stellar kinematics (Pavlik & Vesperini
2021, 2022a,b; Pavlik et al. 2024)

And some initial conditions are not forgotten after ¢!



Machine learning of dynamic
model of SC evolution with Matgj Trnka

and Vaclav Smidl (Czech Technical University)




Problem definition

Initial conditions of SCs - Plummer model (Plummer 1911)
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« BUT it cannot describe SC evolution

The goal is to find analytic prescription for evolved SCs (1st order testing - N-body
models with 10% equal-mass particles).



Initial conditions and evolution

Density profile from the data and a fit with the Plummer profile
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Model GB2

Generalised Beta distribution of the 2nd kind (GB2) probability density
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Model GB2

Generalised Beta distribution of the 2nd kind (GB2) probability density
|G|Xap—1
borB(p, q) (1 + (%)

where a, b, p, g > 0 are parameters giving its shape and B(p, q) is the Beta function.

feor(x;a,b,p, q) = RV

Connection to the radial density profile:

Key properties of GB2:

+ analytic function, flexible, can model a wide range of data
« becomes Plummerfora=2,b=ap, p= %, g=1

n



GB2 results: radial profile
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GB2 results: radial profile
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GB2 results: evolution in time

Fitted (with L-BFGS-b optimisation algorithm) in each time snapshot for 100
realisations of the model
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GB2 results: parameters
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Physical properties and application

Physical properties:

- core collapse time visible in the residuals and parameters
. parameters stabilise after core collapse

« the relation between GB2 and the density profile allows to calculate additional
physical properties of the system



Physical properties and application

Physical properties:

- core collapse time visible in the residuals and parameters
. parameters stabilise after core collapse

« the relation between GB2 and the density profile allows to calculate additional
physical properties of the system

Application:

- analysis of the time evolution
- calculating the velocity dispersion
- convert to 2D projection (important for observations)

- identification of the dynamical age of SCs
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Comparison with observations (2D-projected GB2)

Surface density at radius R (line-of-sight integral)

Y (R) = /_Zp(\/RZ +ZZ> dz

« comparison with real observations gives an estimate of a, b, p, g

« issue in the SC centre - sensitive to values of a and p

Issues with real SCs:

- few bright/observed stars
. outskirts more difficult to observe

- overcrowding (high central density)



2D projection results: generated data
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Condition ap = 3 gives a 3-parameter model with finite, non-zero density in the core
and comparable results in the whole SC



2D projection results: Messier 22

Data of Messier 22 form the Simbad database
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Conclusions & Future aims

Machine-learning techniques seem effective in
- fitting the known evolution of SCs,
« finding them in galaxies,

- etc.

Getting to the interesting evolutionary stages of SCs (e.g. core collapse), however,
takes time and is costly even with the state-of-the-art hardware and software.

We are now checking the results with other methods and we are also working towards
developing a better integrator with Al to speed up the computations.

Thank you for your attention.



owledgement & References

VP has received funding from the European Union’s Horizon Europe and the Central Bohemian
Region under the Marie Sktodowska-Curie Actions - COFUND, Grant agreement ID 101081195
("MERIT"). VP also acknowledges (1) the use of the high-performance storage within his
project “Dynamical evolution of star clusters with anisotropic velocity distributions” at Indiana
University Bloomington; (2) Lilly Endowment, Inc., through its support for the Indiana
University Pervasive Technology Institute; (3) access to computational resources supplied by
the project "e-Infrastruktura CZ" (e-INFRA LM2018140) provided within the programme
Projects of Large Research, Development and Innovations Infrastructures, (4) the support
from the project RVO:67985815 at the Czech Academy of Sciences. and (5) the support from
the research programme Strategy AV21 "Al: Artificial Intelligence for Science and Humanity".

Bialopetravi¢ius, J. & Narbutis, D. 2020, AJ, 160, 264

Binney, J. & Tremaine, S. 2008, Galactic Dynamics: 2nd Ed (Princeton)

Cohn, H. 1980, ApJ, 242, 765

Pavlik, V. 2020a, CAOSP, 50, 456

Pavlik, V. 2020b, A&A, 638, A155

Pavlik, V., Heggie, D. C., Varri, A. L., & Vesperini, E. 2024, arXiv e-prints, arXiv:2405.19400

Pavlik, V., Kroupa, P, & Subr, L. 20193, A&A, 626, A79

Pavlik, V., Kroupa, P., & Subr, L. 2019b, VizieR Online Data Catalog, J/A+A/626/A79

Pavlik, V. & Vesperini, E. 2021, MNRAS, 504, L12

Pavlik, V. & Vesperini, E. 2022a, MNRAS, 509, 3815

Pavlik, V. & Vesperini, E. 2022b, MNRAS, 515, 1830

Pavlik, V. & Subr, L. 2018, A&A, 620, A70

Plummer, H. C. 1911, MNRAS, 71, 460

Spitzer, Jr., L. 1987, Dynamical evolution of globular clusters (Princeton, USA: Princeton
University Press)

Typeset in TEX Metropolis theme (github.com/matze/mtheme), CC BY-SA 4.0

20


https://doi.org/10.3030/101081195
https://github.com/matze/mtheme

	Introduction
	Machine learning of dynamic model of SC evolution with Matěj Trnka and Václav Šmídl (Czech Technical Uni.)
	

