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Focus of this lecture

Globular clusters are thought of as

• spherically symmetric

• dynamically relaxed

• containing (almost) no gas

Global dynamical evolution of SCs takesMyr to Gyr,
i.e. our observations are only snapshots in a random instant.
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Theoretical minimum

Concept of “two-body relaxation”
i.e. we can determine some evolutionary properties of
SCs frommultiple two-body encounters
(e.g. Spitzer 1987; Binney & Tremaine 2008)

• dynamical friction (from the decrease of v||)

• mass segregation (dyn. friction depends on mass)

• crossing time (from avg. velocity and SC radius)
measures the short-term evolution inside SCs

• relaxation time (from the change of v⊥)
measures the long-term evolution of SCs

“stars should forget their initial conditions after trh”

m v
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v
v⏊
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Theoretical minimum

Lagrangian radii
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with fixed mass fractions
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Theoretical minimum

Radial density profile (plots from Cohn 1980; Pavlík & Šubr 2018)
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Example of SCs and AI

Searching SCs in spiral galaxy Messier 83 (Bialopetravičius & Narbutis 2020)

• data from the Hubble Space Telescope and machine learning
• identification and localisation of SCs, revealing evolutionary and structural
parameters
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Connecting the SC’s structure, age, stellar populations, …

Classic theories (e.g. Binney & Tremaine 2008) give good estimates, but sometimes do
not correspond tomore realistic cases:

• some dynamical processes in young SCs (e.g. stellar mass distribution) are less
rapid than predicted (Pavlík et al. 2019a,b; Pavlík 2020a,b)

• the global SC evolution (e.g. structural changes, mass loss, binary stars formation
and destruction) also depends on the internal stellar kinematics (Pavlík & Vesperini
2021, 2022a,b; Pavlík et al. 2024)

And some initial conditions are not forgotten after trh!
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Machine learning of dynamic
model of SC evolution with Matěj Trnka

and Václav Šmídl (Czech Technical University)



Problem definition

Initial conditions of SCs – Plummer model (Plummer 1911)

• spherically symmetric (similar to real SCs)

• has analytic description – e.g. for the radial density profile

ρP(r) =
3Mtot

4πa3P

(
1+

r2

a2P

)− 5
2

• BUT it cannot describe SC evolution

The goal is to find analytic prescription for evolved SCs (1st order testing – N-body
models with 104 equal-mass particles).
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Initial conditions and evolution

Density profile from the data and a fit with the Plummer profile
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Model GB2

Generalised Beta distribution of the 2nd kind (GB2) probability density

fPDF(x;a,b,p,q) =
|a|xap−1

bapB(p,q)
(
1+

( x
b

)a)p+q ,

where a,b,p,q > 0 are parameters giving its shape and B(p,q) is the Beta function.

Connection to the radial density profile:

ρ(r;a,b,p,q) =
Mtot

4π
1
r2
fPDF(r;a,b,p,q)

Key properties of GB2:

• analytic function, flexible, can model a wide range of data
• becomes Plummer for a = 2, b = aP, p = 3

2 , q = 1
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GB2 results: radial profile
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GB2 results: evolution in time

Fitted (with L-BFGS-b optimisation algorithm) in each time snapshot for 100
realisations of the model
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GB2 results: parameters
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Physical properties and application

Physical properties:

• core collapse time visible in the residuals and parameters

• parameters stabilise after core collapse

• the relation between GB2 and the density profile allows to calculate additional
physical properties of the system

Application:

• analysis of the time evolution

• calculating the velocity dispersion

• convert to 2D projection (important for observations)

• identification of the dynamical age of SCs

15



Physical properties and application

Physical properties:

• core collapse time visible in the residuals and parameters

• parameters stabilise after core collapse

• the relation between GB2 and the density profile allows to calculate additional
physical properties of the system

Application:

• analysis of the time evolution

• calculating the velocity dispersion

• convert to 2D projection (important for observations)

• identification of the dynamical age of SCs

15



Comparison with observations (2D-projected GB2)

Surface density at radius R (line-of-sight integral)

Σ(R) =
∫ ∞

−∞
ρ
(√

R2 + z2
)
dz

• comparison with real observations gives an estimate of a, b, p, q

• issue in the SC centre – sensitive to values of a and p

Issues with real SCs:

• few bright/observed stars

• outskirts more difficult to observe

• overcrowding (high central density)
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2D projection results: generated data
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Condition ap = 3 gives a 3-parameter model with finite, non-zero density in the core
and comparable results in the whole SC
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2D projection results: Messier 22

Data of Messier 22 form the Simbad database
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Conclusions & Future aims

Machine-learning techniques seem effective in

• fitting the known evolution of SCs,

• finding them in galaxies,

• etc.

Getting to the interesting evolutionary stages of SCs (e.g. core collapse), however,
takes time and is costly even with the state-of-the-art hardware and software.

We are now checking the results with other methods and we are also working towards
developing a better integrator with AI to speed up the computations.

Thank you for your attention.
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